capoten 50 sublingual generic avalide 300 levaquin efectos secundarios anafranil 75 mg precio actos efectos cefixime 300mg comprar digoxina tab amitriptyline 25mg diclofenac 600 efectos viagra 100 mg periactin 12 mg minocycline 300 mg natural alternative to lisinopril tadalafil receta medica prograf xl 1 mg l-tryptophan 900mg natural version of acyclovir lipitor precio xedenol 50 diclofenac sodico abilify 8 mg natural substitute for inderal benadryl efectos secundarios para que es el cozaar de 50 mg getting off endep 10 levlen ed 30 pill etodolac 400 mg singulair 4 mg tablets natural effexor alternatives pastillas alopurinol 300 mg pulmicort aerosol precio keflex de 125 20 amoxil 500mg cap parlodel 1mg thuoc colchicine 1mg efectos secundarios de tricor 145 mg natural alternatives to lipitor zocor para que sirven las pastillas diclofenac potasico botines mujer calandre para que sirve cephalexin 500mg efectos adversos del trental penegra 100mg price in pakistan tetracycline 200 mg methotrexate 70 mg comprar apartamento barato en benicarlo dapoxetine 30 mg uses triamterene 100 mg zyprexa 5 mg velotab sildenafil 100mg dapoxetine 60mg 60's 750 mg robaxin narcotic ibuprofen 800 mg and lisinopril finasteride se compra con receta bactrim 600 mg orthomouse comprar alli 340 vermox una sola toma precio nolvadex de 10 mg what is ranitidine 150 mg tablet thuốc kháng sinh roxithromycin 150mg aciclovir 600 mg amoxil susp 250 mg abilify 10 mg engorda ibuprofen 800 mg and lisinopril efectos secundario de la tetracycline differin efectos adversos prometrium 200 mg para que sirve neurontin 500mg cefixima 100 mg citalopram 10 mg ahumada terramycin 40 efectos adversos del trental norvasc 25 mg zoloft 100 mg para que sirve prevacid 75 mg medicamento norvasc 10 mg donde comprar lexapro protonix precio lexapro lo venden sin receta endep 50 mg overdose aciclovir comprimido barato kamagra oral jelly 100mg suppliers side effects of hyzaar 100 125 medicina natural septilin lamictal dispersable efectos secundarios atarax et generique tenormin 25 mg tablet fml forte precio is 25 mg of lamictal effective tadalafil generico efectos secundarios bupropion hcl 75 mg side effects comprar ginseng panax hyaluronic acid 250 mg diclofenaco efectos toxicos Breakthrough Method of Stem Cell Expansion, cost of propranolol online, paxil online uk, blog aldara

Breakthrough Method of Stem Cell Expansion


Yupo Ma, MD, PhD, Professor of Pathology Stony Brook

Breakthrough Method of Stem Cell Expansion

Released:6/6/2011 1:00 PM EDT
Source:Stony Brook University Medical Center

Newswise — STONY BROOK, N.Y., June 6, 2011 – Researchers in the Department of Pathology at Stony Brook University School of Medicine have discovered a laboratory method to expand adult hematopoietic stem cells (HSCs) using the SALL4 gene. Professor Yupo Ma, M.D., Ph.D., Lead Author, and colleagues used this method to produce a more than 10,000-fold increase in HSCs derived from normal human bone marrow. Their findings define a new mechanism of stem cell self-renewal, providing a means to produce large numbers of HSCs that could be used to treat hematological malignancies and other blood disorders. Their results are reported in the early online edition of Blood.

HSCs are rare cells capable of differentiating into all blood cell lineages. These cells are used in clinical procedures to treat various blood diseases, including leukemia and lymphoma, and are central to bone marrow transplantation. Only one in three patients in need of bone marrow transplantation are matched with a suitable donor, and thus many patients die before finding a match. The Stony Brook research team’s discovery of using SALL4, which produces a protein that stimulates HSCs to grow, may be a critical first step to finding a treatment based on the expansion of HSCs that could become one alternative to finding a matched donor.

“Investigators have been trying to expand human HSCs for 30 years, but so far there have been only small incremental advances without clinically meaningful results,” says Dr. Ma. “We believe our findings are so different from others that this method could open the door to a process that expands HSCs and be used clinically.”

The research team, spearheaded by co-author Jerell R. Aguila, Ph.D., devised a way to transfer a stem cell gene (SALL4) into human bone marrow HSCs (CD34+ and CD38-) using a viral delivery system. Once the cells started producing the SALL4 protein, they were exposed to chemical agents known as cytokines, in order to mimic the environment of normal bone marrow.

By using SALL4 transduction methods, Dr. Ma’s team of investigators was able to increase the number of HSCs by a factor of 10,000-to-15,000 fold. Subsequently, the team demonstrated that these cells could replace and expand into bone marrow stem cells. The team then successfully transplanted cells from primary recipients and transplant them into a secondary recipient, and from the secondary recipient into a tertiary recipient.

Data presented in the Blood article, titled “SALL 4 is a robust stimulator for the expansion of hematopoietic stem cells,” support the conclusion that this new method is far superior to existing approaches. Using the SALL4 transduction methodology, they found HSC expansion consistently resulted in 10,000-to-15,000 fold increases in the cells. Previous methods to expand HSCs have had limited success, with a 160-fold increase achieved by only one of the methods.

Furthermore, no adverse effects were detected in animal models that were monitored for more than 12 months. Dr. Ma’s team was also able to eliminate the need for viral delivery of SALL4 by generating a novel recombinant (TAT-SALL4) protein, making it possible to translate their work into the clinical setting.

“The achievement of Dr. Ma and his research team is an important milestone along the road to developing new methods to treat leukemia and lymphoma and may someday be applied to create stem cells from other tissues, including heart, pancreas, and muscle,” says Kenneth Shroyer, M.D., Ph.D., Chair of the Department of Pathology at Stony Brook University School of Medicine.

“Ultimately, this method could accelerate the use of stem cell therapies for cancer, as well as a broad range of other diseases,” Dr. Shroyer adds.

The study co-authors include: Wenbin Liao, Ph.D., Nabil Hagag, Ph.D., and Lisa Senzel, M.D., Ph.D., of the Department of Pathology at Stony Brook; Cecilia Avila, M.D., of the Department of Obstetrics & Gynecology at Stony Brook, and Jianchang Yang, M.D., Ph.D., of the Nevada Cancer Institute.

The Blood and Marrow Stem Cell Laboratory at Stony Brook University Medical Center provided the cells used in the research, which was supported, in part, by several grants from the National Institutes of Health (NIH).

About Stony Brook University School of Medicine:
Established in 1971, the Stony Brook University School of Medicine includes 25 academic departments centered on education, training, and advancing scientific research. The primary mission of the School is to educate caring and skilled physicians well-prepared to enter graduate and specialty training programs. The school’s graduate and specialty training programs are designed to educate medical specialists and investigators in the biomedical and clinical sciences to be well-prepared to advance the frontiers of research, clinical practice and education.





  1. Pingback: cool caravans

  2. Pingback: cheap guest beds

  3. Pingback: triactol

  4. Pingback: young women's clothing

  5. Pingback: tallOutdoorBarStools

Welcome to Investor Stemcell! New to the site? Take a minute and Sign Up Today!